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Abstract 
In recent years the interest for terrestrial wildfire smoke detection systems has increased, 
particularly those based on video systems sensitive in visible and/or infrared (IR) spectra. 
Although many video based smoke-detection algorithms have been developed and applied in 
various experimental or real life applications, the standard method for evaluating their quality 
has not yet been proposed and the standard databases of smoke and no-smoke images and video 
sequences suitable for standard algorithms testing have not been defined. This paper proposes 
such a methodology suitable for smoke-detection algorithms testing and evaluation. Various 
measures for smoke-detection algorithms evaluation have been introduced and a database 
suitable for off-line algorithms testing is defined.  The evaluation is based on notation of observer, 
the formal theory of perception and signal detection theory. The referent observer (usually the 
human referent observer) determines the real state of phenomena. In the case of video based 
smoke detection algorithms, analysed images are considered as a collection of pixels, where each 
pixel belongs to one of two sets: smoke or no-smoke, and this process of pixel classification is 
present on both levels: objective level and perceived (or observer) level. Multiple measures based 
on these two sets are introduced to describe the quality of the observer regarding single image 
analysis as well as image sequence analysis.   
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1. Introduction 
 

Wildfires are a significant hazard to ecological systems around the world and can 
also be a threat to human safety. Traditional way of fire detection are fire lookout towers 
located on high grounds with good visibility, where people visually look for signs of fire or 
smoke appearance. In last ten years wildfire detection systems have been developed to help 
human observers by alerting them when a smoke-like phenomenon appears.  

Such systems are generally conceived of video cameras or other appropriate sensor 
devices installed on monitoring spots and a computer system that analyses the provided 
video data and generates potential alarms. Over time these systems have become more and 
more automated, so one observer can now cover far larger areas than before. Detection 
algorithms are improved and system capabilities enhanced (Stipaničev et al., 2010). 
However, as much as it is obvious that these systems have evolved, there are still no 
standard methods for evaluating such systems and there is no standard image and video 
database that can be used for testing.  

In this paper evaluation methods based on notation of observer, formal theory of 
perception and signal detection theory are presented as global measures suitable for wildfire 
detector (in this paper called wildfire observer) overall quality evaluation, but also as local 
measures suitable for fine tuning different aspects of the observer. 
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2. Notation of observer, formal theory of perception and detection algorithms 
evaluation 
 

Formal theory of perception introduced by Benett, Hoffman and Prakash  (Benett et 
al., 1989; Benett et al., 1996) defines an observer as a six-tuple: 

O = (X, Y, E, S, π, η)    (1) 

where X and Y are measurable spaces, E and S are subsets of X and Y respectively, π is 
measurable surjective function and η conclusion kernel. Space X is a configuration space of 
the observer and E is a configuration event of the observer. Space X is a formal 
representation of those possible states of affair over which the configuration event E of the 
observer is defined. Y is an observation space, or premises space, of the observer. Space Y 
is a formal representation of the premises available to the observer for making inferences 
about occurrences of E. S is the observation event. All and only points in S are premises of 
observer inferences that conclude that an instance of the configuration event E has 
occurred. π is a perspective map, the measurable surjective function from X to Y (π :X → 
Y)  with π(E) = S. η is a conclusion kernel of the observer. For each point in the 
observation event s ∈ S, η(s,⋅) is a probability measure on E supported on (π

-1(s) ∩ E). This 
means that kernel η is a convenient way of assigning to every point of S a probability 
measure on E.  

In order to achieve perception of the environment and appropriate target 
phenomenon within that environment sensory input data are needed. Using sensory input as 
premises, the final decision about the detection of target phenomenon or certain scenario 
about the environment can be made. Wildfire is taken as a target phenomenon that should 
be detected by the human observer or automatic detection system. The space X is a set of 
all possible scenarios that could be encountered in the environment. Some of possible 
scenarios that could happen are: thunder, lightning, twister, fog and rain. Even a sunny day 
could be considered as a possible scenario. But only those scenarios or phenomena 
indicating the occurrence of wildfire are collected in the set E or configuration event that is 
subset of X. Primary indicator of any event contained in E is presence of smoke and flames, 
but doesn’t necessarily exclude other phenomena, e.g. forest fires are often caused by 
lightening.  Next part is observation space Y, which is highly connected to sensor structure 
of the system. Observation space is defined as a set that contains all possible sensor states, 
in relation to all actual possible states of the environment.  

The mapping function, or the sensors function is the perspective map π, which 
translates every point in configuration space to its pair in observation space. 
Implementation of the mapping function depends on the sensor itself. If only visual sensors 
are available then Y will be orthogonal projection of real space that is covered by the 
camera, if sensors system includes other sensor types, like meteorological sensors then 
those types of measurements will also be contained in Y. The perspective map has to be 
surjection, but not necessary injection, so the set Y usually holds fewer elements then set X. 
Through the process of mapping all the elements in X are mapped to Y and elements 
belonging to E are mapped to S. So the set S holds those scenarios where the indicators of 
target phenomenon are collected by the sensors.  The structure of wildfire observer is more 
complex and illustrated in Figure 1. Wildfire observer includes two observer types: the low-
level observer and the high-level observer (Stipaničev et al., 2010). 
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Figure 1. Wildfire observer is composed of low-level observer and high-level observer 

The main task of the low-level observer is images acquisition, validation and 
preparation for the high-level observer whose main task is phenomenon (wildfire smoke) 
recognition. For further discussion only high-level observer will be considered and we will 
suppose that only visual sensor is available. In that case the configuration space X of the 
high-level observer is the set of input images and the observation space Y is the set of 
output images with detected smoke (observation event S) and without detected smoke. The 
set E includes all those input images from X where phenomenon (wildfire smoke) is truly 
present (in practice usually defined by the referent human observer) and the set π

-1(S) 
includes input images from X corresponding to images from S where wildfire observer has 
detected smoke. Figure 2 shows four possible scenarios in detection process:  true 
detection or correct detection (xi∈E, yi∈S), false detection or false alarm (xi∉E, yi∈S), 
false not detection or missed detection (xi∈E, yi∉S) and true not detection or correct 
reject (xi∉E, yi∉S). In statistical decision theory false alarm is considered as false positive 
error or type I error and missed detection as a false negative error or type II error and the 
table in Figure 2 is sometimes called confusion matrix.  

 

Figure 2. Possible scenarios in wildfire detection 

For wildfire observer missed detection is the worst-case scenario because the 
efficiency of the whole observer is questioned. False detection is the situation where the 
phenomenon does not exist in reality but the image after detection is mapped in S. It is 
currently the main problem regarding most commercial wildfire detection systems. Almost 
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every available system has a small number of missed detections, but the number of false 
detections sometimes could be relatively high. 

In order to introduce automatic wildfire observer evaluation measures, first the 
referent observer is introduced. It is a human observer and results of his (her) observations 
are considered as referent results or ground truth. This method is known as empirical 
discrepancy method and it is often used in image segmentation evaluation (Zhang, 1996). 
In the next chapters two types of measures are proposed, global evaluation measures 
suitable for wildfire observer overall quality evaluation (Šerić et al., 2009), and local 
evaluation measures suitable for wildfire smoke-detection algorithms quality evaluation, 
first time proposed in this paper. 

 
3. Global evaluation measures of the wildfire observer 
 

Two types of wildfire detection algorithms could be distinguished, depending on 
how many input images are used for wildfire detection: a single image wildfire detection 
and image sequence wildfire detection algorithms. Algorithms belonging to the first case 
are nothing but special image segmentation algorithms enhanced with recognition of image 
regions where fire smoke and/or fire flames are presented. In algorithms belonging to the 
second case, various motion analyses are also applied, so a sequence of input images is 
needed. Today’s wildfire detection algorithms mostly belong to the second case. Usually a 
short sequence of images, taken every couple of seconds, is used as a unique detection 
sequence resulting (or not resulting) in one fire alarm.  

Global evaluation measures for wildfire smoke detection are based on results 
regarding both situations where the smallest unit of detection is a single image or a single 
detection sequence. Wildfire detection in the context of global evaluation is treated as a 
binary classification problem. The task of wildfire observer is to classify the members of 
the set of input images (or image sequences) into two groups: wildfire present (detected) or 
wildfire not present (not detected).  Wildfire observer classification results (results of 
wildfire detection process) are then compared with classifications derived from the referent 
human observer (ground truth). 

According to notation of observer and Figure 1, let X be a set of all images (or 
detection sequences) in a testing collection, π

-1(S)  is a subset of X containing only those 
images (or detection sequences) where smoke was detected by wildfire observer, and E is a 
subset of X containing those images which are marked in the ground truth as smoke images 
where smoke was detected by referent human observer. Individual image (or detection 
sequences) can be present in both sets, π

-1(S) and E and that implicates a correct detection. 
A set TP contains those images (or detection sequences) that are correctly detected: 
 

TP = π-1(S) ∩ E     (2) 
 

The situation when an image (or detection sequence) is not present in both π-1(S)  and E is 
called a correct reject. A set TN contains those images (or detection sequences) that are 
correctly rejected: 

TN = (π-1(S))C ∩ EC     (3) 
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The situation when an image (or detection sequence) is present in π-1(S) and it is not present 
in E is called a false alarm. Set FP, is a set of all falsely detected images (or detection 
sequences): 

FP = π-1(S) ∩ EC     (4) 

The situations when an image (or detection sequence) is present in E and not in π-1(S) is 
called missed detections. Set FN containing all missed detections is defined as: 

FN = (π-1(S))C ∩ E    (5) 

These situations are illustrated in Figure 3. 
 

 

Figure 3. Set theory approach to possible scenarios in wildfire detection 
 

Based on confusion matrix and sets TP, FP, FN and TN, binary classification model 
defines various measures quite applicable for definition of wildfire observer global 
evaluation measures. Sensitivity and specificity are maybe the most important of them, 
especially in connection with receiver operating characteristics (ROC) curves that will be 
discussed later.  Sensitivity of the wildfire observer evaluates observer quality according to 
correct detections (cd). It could be defined as true positive rate: 
  

cd = TPR=
|TP |

| E |
=

|TP |

|TP | + | FN |
    (6) 

 
where | . | denotes set cardinality (number of set elements). For example | TD | is the set 
cardinality of the set TD defined by equation (2) or for wildfire observer it represents the 
number of images (or image sequences) classified as positively detected (fire alarm 
generated). Similarly observer quality in the aspect of false detections (fd) could be defined 
as false positive rate: 

fd = FPR=
|FP |

|FP |+ |TN |     (7) 

The observer quality in aspect of correct rejections (cr) could be defined as 
specificity or true negative rate: 
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cr = TNR=
|TN |

|FP |+ |TN |
=1− FPR   (8) 

The observer quality in aspect of missed detections (md) could be defined as false negative 
rate: 

md= FNR=
|FN |

|TP |+ |FN |
=1−TPR  (9) 

All measures take values in interval [0,1]. Figure 3 shows a real observer where 
neither of measure is 1 or 0. cd and cr have to be as high as possible (or fd and md as low as 
possible). Figure 4 shows few special cases. If both measures cd and cr are equal to 1 (fd 
and md are then equal to 0), the observer is declared as an ideal observer, at least for 
testing collection of images or image sequences. This means that all input images or image 
sequences are correctly classified as smoke or not smoke. Observer is considered a no-miss 
observer if cd = 1 (md = 0). The good observer has no missed detections and 
mathematically that implies E ⊂ π -1(S) . Observer is considered a bad observer if cd = 0 

(md = 1), implying π -1(S) ∩ E = Ø . Another extreme case is the worst observer when cd 
=  cr = 0 (fd = md = 1), implying π-1(S) = EC.  
 

 

Figure 4. Illustration of various observers according to their quality 
 

Sensitivity and specificity define the ROC (Receiver Operating Characteristics) 
space, a unit square in coordinate system having (1 – specificity) or false positive rate on x-
axis and sensitivity or true positive rate on y-axis. Every analysed wildfire observer could 
be represented by one point in the ROC space. Figure 5 shows few typical examples. The 
diagonal divides the ROC space into observer’s area and inverse observer’s area, because 
all points bellow the diagonal line could be simply inverted to obtain points above the line. 
Diagonal correspond to completely random guess which means that if a certain wildfire 
observer has a corresponding point along the diagonal (for example at point B), the 
conclusion is that all decisions were made by random or simply flipping coins (head fire, 
tail non fire). The point (0,1) corresponds to ideal observer and the point (1,0) corresponds 
to the worst observer. For ideal observer all detections are correct detections and there are 
no false and missed detections. For the worst observer situation is inversed, all real fires are 
missed, and all no-fire situations are detected as false detection. Because of that the worst 
observer could easily become ideal observer by simple decision inversion (when detecting 
fire conclude not fire and vice versa). The whole line where TPR = 1 is no-miss observer 
and line with TPR = 0 is bad observer line according to Figure 4. Point (0,0) corresponds to 
all missed - no false situation and point (1,1) to no missed - all false situation. Points A and 
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C correspond to two real observers. Observer C is better than observer A, because it has 
more correct detections and less false detections. 

 

Figure 5. a) The ROC space. b) An example of global evaluation measures calculation.  
c) An example of missed detection and true detection in the next image sequence. 

Few other measures, well known in signal detection theory and error analyses, are 
also quite suitable for wildfire observer evaluation. The accuracy (acc) is defined as degree 
of closeness of measurements of a certain quantity to its actual (true) value (Taylor, 1999). 
In terms of wildfire observer it could be defined as relation between correctly detected 
images (or image sequences) and total number of images (or image sequences). 
 

acc=
|TP|+ |TN |

| X |
=

|TP|+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
   (10) 

The positive predictive value or precision, reproducibility or repeatability (ppv) is 
the degree to which repeated measurements under unchanged conditions show the same 
results (Taylor, 1999). 

ppv=
|TP|

|TP |+ |FP |                                 (11) 

The Matthews correlation (mcc) is a quality measure for the binary classification 
problem (Matthews, 1975). It takes into account true and false positive and negative 
detections and it is generally regarded as a balanced measure that can be used even if the 
classes are of very different sizes. 

|)|||)(||||)(||||)(|||(|

||||||||

FNTNFPTNFNTPFPTP

FNFPTNTP
mcc

++++
⋅−⋅=

         (12) 

An example of global evaluation measures calculation is shown in Figure 5b for 
iForestFire wildfire monitoring system (Šerić et al., 2009) located in Nature Park Biokovo, 
Makarska, Croatia. In March 2010 regular annual tuning of detection algorithms were 
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performed based on global evaluation measures. Figure 5a shows an example for March 26, 
2010 from 9:00 to 12:00. We have chosen this period because also some missing detections 
were recorded, but as a meter of fact missing detections were recorded only in the first 
detection sequence. The system has detected fire successfully in the next detection 
sequence 2 minutes after the first missed detection.  

 
4. Local evaluation measures of the wildfire observer 
  

Local evaluation measures for wildfire smoke detection system are based on results 
regarding a single image where the smallest unit of detection is one image pixel. Sets X, E 
and π-1(S) are now defined as follows: X is a set containing all image pixels, π-1(S) is a 
subset of X containing only those pixels that are marked as smoke by automatic wildfire 
observer and E is a subset of X containing those pixels that are marked in the ground truth 
as smoke pixels by referent human observer. Following the methods from the previous 
chapter the same evaluation measures cd, fd, cr, md, acc, ppv, and mcc could be defined, 
but this time on the local image level.    

To illustrate the application of the global and local evaluation measures a collection 
of 6 different image sequences were used, having all together 256 images with time 
difference of 1 second. On 5 sequences the wildfire smoke was present, and 1 sequence was 
without the smoke. These image sequences are part of our standard wildfire smoke video 
database used for testing various smoke detection algorithms (SmokeRec, 2010). As a 
smoke detection algorithm method described by (Toreyin et al., 2006) has been used. 
Figure 6 shows one typical image from image collection and Figure 7 shows average results 
of global and local measures calculation.  

 

Figure 6. Typical image from image collections used in algorithm evaluation (input image, 
ground true image segmentation, and detection result) 

 

Figure 7. Global and local evaluation measures for 256 images in 6 image sequences  

The first group of rows in Figure 7 shows global measures concerning image 
sequences, the second one shows global measures concerning all images in all image 
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sequences and the third group shows local measures concerning all pixels in all images. 
Figure 7 shows that the same algorithm behaved as an ideal observer on image sequence 
level and as a real observer on image collection level and on image pixels level. On image 
sequence level smoke has been detected in all 5 image sequences, but on image collection 
and image pixels level the algorithm has detected smoke after approximately 20 images and 
that is the reason why there are a lot of missed detections (measure md high). 

 

Figure 8. Quality graphs: a) cd, b) cr, c) fd, d) md, e) acc, f) ppv, g) mcc and h) ROC curve 
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Beside these average measures in this paper we would like to propose the observer 
quality graphs as a more useful tool for smoke detection algorithms evaluation. Observer 
quality graph is a graph showing values of the specific measure for all the images in the 
collection sorted increasingly according to measure values. Figures 8 shows observer 
quality graphs for measures cd, cr, fd, md, acc, ppv, and mcc. 

Algorithm evaluation on local scale can also be performed using ROC (Receiver 
Operating Characteristics) curves. ROC curve is a graph in ROC coordinate system shown 
in Figure 5a obtained by plotting the trade-off for every possible detection algorithm 
threshold (Fogarty et al., 2005). The tradeoffs at different thresholds between obtaining 
more true positives at the expense of additional false positives detections for analysed 
detection algorithm is shown Figure 8h. ROC curve is usually plotted for a single image 
using multiple thresholds. Although the curve is plotted with different thresholds it cannot 
be taken as an absolute criterion for classifier evaluation because the curve is specific for 
each image. Different conditions present at the detection site generate different curves; 
however it can be used as a general indicator of classifier performance.  
 
5. Fuzzy local evaluation measures for wildfire observer 
 

Wildfire smoke is by its nature an amorphous phenomenon without exact borders 
and edges. When observed from a small distance it is a semi-transparent phenomenon that 
gradually occludes the background. Smoke detection is quite difficult task because of its  
transparency and undefined shape and because of that the smoke detection systems are 
prone to missed and false detections. When evaluating different smoke detection methods 
pixels on the image categorised by referent human observer are often categorised as binary 
categories: smoke or non-smoke (smoke background). This approach can lead to a precision 
error in evaluation because the transparency of the smoke can make the pixel partially 
smoke, and partially background. Figure 8. illustrates that smoke boundaries cannot be 
precisely defined, certain pixels can clearly be categorised as smoke, and others are much 
more difficult to distinguish from the background.  

 

 
Figure 8. a) Original image, b) image overlaid with pixel membership to class smoke in 

colour space and c) ground true fuzzy segmentation  
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In order to reduce the evaluation error a new method for smoke-detection algorithm 
evaluation based on fuzzy logic is presented. Every pixel in the image can have a degree of 
membership to the class smoke as well a degree of membership to the class background. 
The membership degree for each class can be hard to determine precisely even for a human 
observer, but it can be estimated within a reasonable level of certainty. The degree of 
membership can have a value from the interval [0,1] where 1 indicates the pixel most 
definitely belongs to certain class (in our case smoke). The relation between memberships 
of classes smoke and smoke background could be defined as 

)(1)( xx sb µµ −=    (13) 

where µb(x) is a background membership function for the pixel x and µs(x) is a smoke 
membership function for the pixel x. Most current detection algorithm can be modified to 
generate fuzzy output in form of probability of image pixels belonging to a certain class and 
such output is compared to referent ground-truth fuzzy-segmented images. Evaluation is 
used to determine the real error of the algorithm taken into consideration the conditions and 
the error cost. Error in which a false alarm is generated has a lot lower cost than error in 
which the smoke is not detected and in accordance with such criterion evaluation of the 
detection algorithm is performed. Let us first introduce the error errp for a pixel p 
calculated using equation: 





≥−
>−⋅⋅

=
RORO

RORR
ORerrp

0)(3
),(

   (14) 

where R is the referent fuzzy value for the pixel p and O is the fuzzy value given by the 
observer (algorithm) for the same pixel. This measure takes into account the type of error as 
well as the extent of the error. For O > R the assessed value for the smoke membership is 
grater then in the referent ground-truth fuzzy-segmentation. This scenario is called fuzzy 
false detection and its cost is much less then for scenario called fuzzy missed detection 
when R > O. The error cost for fuzzy missed detection increases with referent fuzzy value 
for the pixel p and with the difference between observer and referent values. Special case is 
O =R when the error value is zero errp(R,O) = 0. Let us now introduce measure ngS for 
smoke detection algorithms evaluation on one image level as average error of the whole 
image: 

∑=
p

pS ORerr
P

ng ),(
1

    (15) 

where P is the total number of pixels in analysed image. This measure has to be as low as 
possible. For example for smoke detection algorithm analysed in previous chapter and a 
collection of 6 image sequences having 256 images average ngS measure was 6.48. 

 
6. Conclusion 
 

Smoke detection has bas been a field of active research in the last ten years. 
Significant number of smoke detection systems has been developed; however, there is no 
standard way of testing the performance of the complete system. In this paper various 
methods for smoke-detection evaluation based on the notation of observer, formal theory of 
perception and signal detection theory have been presented. Evaluation measures are 
proposed as global evaluation measures and local evaluation measures depending on the 



VI International Conference on Forest Fire Research 
D. X. Viegas  (Ed.), 2010 

 

aspect of the classifier being evaluated. The transparent property of the smoke is also taken 
into account using fuzzy-based evaluation. Average fuzzy error could be computed using 
referent fuzzy-segmentation compared against algorithm output on the pixel-bases. 
Proposed measures could be used as a tool for smoke-detection algorithm evaluation, either 
for comparison of different algorithms or for individual algorithms fine-tuning in order to 
achieve better performances. 
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